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Random networks are intensively used as null models to investigate properties of complex networks. We
describe an efficient and accurate algorithm to generate arbitrarily two-point degree-degree correlated undi-
rected random networks without self-edges or multiple edges among vertices. With the goal to systematically
investigate the influence of two-point correlations, we furthermore develop a formalism to construct a joint
degree distribution P�j ,k�, which allows one to fix an arbitrary degree distribution P�k� and an arbitrary
average nearest neighbor function knn�k� simultaneously. Using the presented algorithm, this formalism is
demonstrated with scale-free networks �P�k��k−�� and empirical complex networks �P�k� taken from network�
as examples. Finally, we generalize our algorithm to annealed networks which allows networks to be repre-
sented in a mean-field-like manner.
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I. INTRODUCTION

The fast developing research field of complex networks
�1,2� focuses on the three main aspects of �i� measuring net-
work topology, �ii� investigating dynamics on networks, and
�iii� studying the interplay between dynamical processes on
networks and the network topology. Surprisingly, empirical
networks from a vast variety of scientific fields share a lot of
characteristical features. Prominent examples are the small-
world property �3�, high clustering �4�, and the scale-free
degree distribution �5�. One possibility to unravel the prop-
erties of empirical networks is to compare them to null mod-
els. Appropriate null models are random networks with some
of the statistical features preserved being present in the em-
pirical network under investigation. This idea gave birth to
the well-known configuration model �CM� algorithm �6–10�,
which is capable of generating random networks with an a
priori given degree distribution. Some extensions to this
model have been proposed to even conserve some further
statistical properties than the plain degree distribution, for
instance, the degree dependent clustering coefficient �11�.

A fundamental way to categorize and distinguish empiri-
cal networks beyond the degree distribution and clustering
has been proposed by Newman �12,13� who introduced the
Newman factor r. This number is basically the Pearson cor-
relation coefficient of degrees �the number of edges emanat-
ing from a vertex� from connected vertices in a network and
is therefore fully defined by two-point degree-degree corre-
lations in a network. The range of the Newman factor is in
the interval �−1,1� where positive �negative� values indicate
that vertices with the same �different� degree tend to be con-
nected, while a value of 0 means no correlation. Practically
all empirical networks show a nontrivial two-point correla-
tion structure. An astonishing observation is, for example,
the fact that biological networks show negative Newman fac-
tors, while technological networks display rather small val-
ues of the Newman factor close to zero, whereas social net-
works tend to have rather large positive values �14�. The
evident importance of correlations within the degree distri-
bution has led to lots of efforts, for example, a hidden vari-
able approach has been developed in Ref. �15� and so-called

dK-series networks, which systematically describe the full
correlation structure of a network, have been introduced in
Ref. �16� together with an algorithm for the lowest dK
classes. Thus, an efficient random network generator which
constructs null model networks at the basis of an a priori
prescribed two-point correlation structure is very important.
Such a generator is presented below and allows one to con-
struct undirected random networks with a prescribed two-
point correlation structure and hence much more realistic
null models. The major advantage of our generator in com-
parison with similar algorithms previously introduced
�15–17� is its high accuracy and the generality of the ap-
proach, which allows one to construct networks with an ar-
bitrary two-point correlation structure. As an application of
this scheme and in order to investigate the influence of two-
point correlations within empirical networks, we address the
question of how one can model two-point correlations while
preserving the degree distribution of a network. This is fun-
damental, for instance, in order to shed light on the interplay
between dynamical processes on networks on the underlying
network topology with respect to two-point correlations.

The modeling of two-point correlations is especially in-
teresting for the verification of theoretical predictions from
theories describing dynamical processes on networks which
do incorporate two-point correlations. Due to the small-
world effect present in networks, it is common use to utilize
a mean-field �MF� ansatz. Hence, within these theories the
network is modeled using a probabilistic approach and ver-
tices are only connected with a certain probability to each
other. The idea to represent a network by probabilities has
already been brought up in the context of Kauffman’s model
of random complex automata �18,19�. This so-called an-
nealed network changes in every time step such that all
edges are redistributed. A similar approach has recently been
applied by Stauffer and Sahimi �20� to scale-free networks to
study the effect of “annealed disorder” on a diffusion process
�20�. Such annealed networks are ideally suited to test the
validity of MF theories of dynamics on networks. We extend
this approach below by generalizing our algorithm to allow
for the construction of two-point-correlated annealed net-
works.
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This paper is organized as follows. Section II introduces
the network correlation measures used in this paper. Section
III describes the algorithm to construct arbitrarily two-point-
correlated networks. Section IV develops a formalism which
allows one to fix a degree distribution and to arbitrarily
choose the two-point correlations at the same time. The for-
malism is demonstrated with scale-free networks and empiri-
cal networks as examples. Section VI introduces the notion
of a two-point-correlated annealed network. We conclude
and give an outlook in Sec. VII.

II. CORRELATION MEASURES

The following is a short summary of common definitions
adapted to our purposes which will be used frequently within
this paper. Two-point correlations are statistically described
by the joint degree distribution P�j ,k�, which is the probabil-
ity that a randomly chosen edge of the network has vertices
with degrees j and k at its ends. This distribution is a sym-
metric function in the case of undirected networks, P�j ,k�
= P�k , j�. By summation over either parameters of P�j ,k�,
one obtains the distribution over edge ends,

Pe�k� = �
j

P�j,k� , �1�

which is related to the degree distribution by

P�k� =
k̄

k
Pe�k� . �2�

This last relation �2� between the edge end distribution Pe�k�
and the degree distribution P�k� can easily be understood by
the fact that every vertex with degree k has probability P�k�
of being drawn at random from the network. Therefore, the
probability to draw an edge end connected to a vertex of
degree k is proportional to kP�k�. Normalizing this last ex-

pression yields the edge end distribution Pe�k�=kP�k� / k̄.

Here, k̄=�kkP�k� denotes the mean with respect to the de-
gree distribution P�k�. This mean has to be carefully distin-
guished from the mean with respect to the edge end distri-

bution Pe�k�, which we denote by �k�=�kkPe�k�=k2 / k̄. It is
convenient �21� to extract the actual correlations from P�j ,k�
by relating it to the uncorrelated case Puc�j ,k�, which has the
special product form

Puc�j,k� = Pe�j�Pe�k� . �3�

By taking the ratio between P�j ,k� and Puc�j ,k�, this defines

f�j,k� =
P�j,k�

Puc�j,k�
�4�

as a correlation function.
However, the joint degree distribution P�j ,k� and the cor-

relation function f�j ,k� are complex functional objects which
are hard to imagine. A way to quantify the overall correlation
present in a network was introduced by Newman �12�. He
defined the Newman factor r to be the Pearson correlation
coefficient of the remaining degrees of two vertices at either

end of a randomly chosen edge. The use of the remaining
degree, which is the actual degree of a vertex minus one, is
only an arithmetic trick to suppress some terms in calcula-
tions performed by Newman. In this paper, we directly use
the degrees of the vertices, which is equivalent to Newman’s
definition in the limit of large networks,

r =
1

�e
2�

j,k
jk�P�j,k� − Pe�j�Pe�k�� . �5�

The Newman factor r is normalized by �e
2= �k2�− �k�2 to fall

into the range �−1,1�. A positive �negative� value means that
vertices with a degree k preferentially attach to vertices with
a degree of the same �different� order, which is referred to as
�dis-�assortative mixing. The special case of r=0 is achieved
in the case of no correlation, which can be seen by substitut-
ing Puc�j ,k� of Eq. �3� into Eq. �5�. It is clear that the New-
man factor r quantifies the correlations present in a network
only on a global scale. An intermediate approach, being on
the level of degrees, has been introduced in Ref. �22� with
the average nearest neighbor function knn�k�. Using the con-
ditional probability

P�j�k� =
P�j,k�
Pe�k�

, �6�

which is the probability that a randomly chosen neighbor of
any vertex with degree k has the degree j, one defines knn�k�
to be

knn�k� = �
j

jP�j�k� . �7�

In the case of an �dis-�assortative network the average near-
est neighbor knn�k� has to be an �de-�increasing function,
while it has the constant value �k� for uncorrelated networks.
It is interesting to note that

�knn�k�� = �k� �8�

is generally valid, which can be seen by plugging Eq. �6� into
Eq. �7� and averaging the resulting equality over k with re-
spect to the edge end distribution Pe�k�.

III. ALGORITHM

The well-known CM algorithm �6–9� fixes a priori a de-
gree sequence which is usually drawn from a given degree
distribution P�k�. Each element of this degree sequence is the
number of desired edges emanating of a vertex. These may
be thought of as half-edges which still need to be joined with
half-edges of other vertices. To construct the network, the
CM algorithm may be implemented by placing all half-edges
of all vertices into a single list, which is a discrete represen-
tation of the edge end distribution Pe�k�. An edge is formed
by selecting two random members of that list. If the con-
straint of neither self-edges nor multiple edges is met, the
edge is created and the two half-edges are removed from the
list. As the first and the second draw is done from the same
list or, equivalently, each draw is done independently with
the edge end distribution Pe�k�, the resulting network is al-
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ways uncorrelated. Only the constraint of self-edges and
multiple edge prevention induces some intrinsic correlations,
which can be avoided if the maximal degree kmax is limited
�cf. Sec. IV A�. The CM algorithm paired with the correct
choice of the maximal degree kmax is as well known as the
uncorrelated CM �UCM� algorithm �10�. However, almost all
empirical networks do display two-point correlations in their
topology. The algorithm discussed below allows one to fix a
priori an arbitrary joint degree distribution P�j ,k� and gen-
erates a network which is completely random under all other
topological aspects, just as the CM algorithm does with re-
spect to the degree distribution P�k�.

A major computational complication arises from the fact
that probabilities in the P�j ,k� matrix may become very

small as the probability for one edge is of the order 1 / k̄N and
computationally hard to handle for large N. Due to this prob-
lem, we sample in a first step a half-edge with the usual edge
end distribution Pe�k�; in a second step, we sample a half-
edge from the conditional probability distribution P�j �k�.
The former two objects are much easier to sample as those
are the result of integrals over P�j ,k� and therefore contain
probabilities of greater order.

The overall scheme of the algorithm to construct a net-
work with N vertices and a given joint degree distribution
P�j ,k� is the following:

�1� As in the CM algorithm, one first has to draw a degree
sequence by calculating the theoretical �continuous� edge
end distribution Pe�k� from the joint degree distribution
P�j ,k� and transform that into a degree distribution P�k�.
From this distribution, a degree sequence of length N is
drawn.

�2� Each element of the degree sequence represents a ver-
tex. All vertices with the same degree k are then sorted into
degree classes, each containing only vertices of the same
degree k.

�3� To compensate for discretization effects caused by the
finiteness of the sampled network, one has to calculate the
discrete edge end distribution Pe

�d��k� from the generated de-
gree sequence. To do so, one acquires, by estimating the size
of each degree class, the discrete degree distribution P�d��k�,
which corresponds to a discrete edge end distribution by

Pe
�d��k�=kP�d��k� / k̄.

�4� Next, the discrete conditional probability P�d��j �k� is
set up. To obtain a matrix which accommodates the discreti-
zation effects, one replaces the continuous edge end distribu-
tions Pe�k� in the definition of the conditional probability
distribution of Eq. �6� by the discrete edge end distributions
Pe

�d��k� and obtains therefore

P�j�k� =
P�j,k�
Pe�k�

= Pe�j�f�j,k�

	 Pe
�d��j�f�j,k� = Pe

�d��j�
P�j,k�

Pe�j�Pe�k�
. �9�

Since we mix the discrete edge end distribution Pe
�d��j� and

the continuous correlation function f�j ,k�, the resulting con-
ditional degree distribution P�d��j �k� is only approximately

normalized for a given degree class k. To obtain a condi-
tional probability distribution suitable for sampling degree
classes, we normalize each degree class separately, leading to
the final form

P�d��j�k� =
Pe

�d��j�
Pe�j�

P�j,k�
�
j

Pe
�d��j�

Pe�j�
P�j,k��−1

. �10�

This definition is consistent with the limes N→�, as the
discrete edge end distribution Pe

�d��j� becomes equal in this
limit to the continuous edge end distribution Pe�j� and the
ratios Pe

�d��j� / Pe�j� become exactly 1, respectively.
�5� After all base data structures have been initialized, the

algorithm starts to draw edges by drawing edge ends. The
first edge end is selected by first drawing a degree class k
from the edge end distribution Pe

�d��k� and then randomly
choose a vertex from that degree class.

�6� The second end of the edge is chosen in the same two
step manner. However, the first draw of a degree class j is
done with the appropriate conditional probability distribution
P�d��j �k� instead of the edge end distribution Pe

�d��k�. This
construction scheme yields correctly correlated graphs, since
we have

Pe�k�P�j�k� = P�j,k� .

1.draw 2.draw �11�

An edge is created whenever the constraints of neither self-
edges nor multiple edges is met. Otherwise the drawn edge is
rejected and the algorithm continues with step �5�.

�7� If the edge is created, the probability weights of the
two edge ends are removed from the corresponding degree
classes in the edge end distribution Pe

�d��k� and the condi-
tional probability distribution matrix P�d��j �k�. The removal
of the probability weight is equivalent to the removal of the
two half-edges from the list of eligible half-edges in the CM
algorithm.

�8� Steps �5�–�7� are repeated until no edge ends are left
and all edges are formed.

The principal numerical costs of the algorithm arises from
the continuous sampling of degree classes in steps �5� and
�6� above. Since the algorithm has to sample only the degree
classes actually realized, which is a significantly lower num-
ber than the system size N, the numerical costs are of the
order O�N�� with ��1. Furthermore, due to the removal of
probability weight of used half-edges throughout the con-
struction procedure, the algorithm samples only the possible
configuration space which remains valid in each iteration
step just as in the CM algorithm. The memory usage of the
algorithm scales with the square of the number of realized
degree classes. This can become a significant advantage over
the CM procedure as described above, since the memory
usage of the CM procedure scales with the number of half-
edges needed to construct the network.

To validate our algorithm, we use three empirical net-
works as test cases: �i� a social network where the 392 340
vertices are actors and the edges between those are assigned
if they performed in at least one movie together �5�; �ii� a
subset of the World Wide Web �WWW� containing 325 759
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web pages which are connected if there exists a link among
them �23�; and �iii� the yeast protein-interaction network
constituent of 1846 proteins �24�. The data has been down-
loaded from Barabási’s web site http://www.nd.edu/
�networks. All self-edges and multiple edges were removed
from each network. The actor network is assortatively �r
=0.27�, the WWW network weakly �r=−0.053� and the
yeast protein-interaction network disassortatively �r=−0.16�
correlated. To test the correctness of the algorithm, one mea-
sures the joint degree distribution Pref�j ,k� of the base net-
works and uses this function as input for the construction
algorithm. The resulting random network has to display the
same degree distribution P�k� and joint degree distribution
P�j ,k� as the empirical one. A very sensitive test to validate
if the correlation structure of the reference and the random
network indeed match is on the level of the correlation func-
tion f�j ,k�, which varies on a much smaller scale than the
joint degree distribution P�j ,k�. Thus, comparing the refer-
ence correlation function f ref�j ,k�, which one obtains from
the empirical network, with the correlation function f�j ,k� of
the network as generated by the algorithm by means of a
correlation coefficient �1 means total agreement, −1 indicates
that the two functions are of opposite sign, and 0 means no
correlation among the two functions in comparison� reveals
almost complete agreement of �i� 0.99�6�, �ii� 0.9�9�, and �iii�
0.99�8�. A density plot of the reference correlation function
versus the resulting correlation function in Fig. 1 verifies the
excellent agreement of the correlation functions f�j ,k� and
f ref�j ,k�. The plot shows the corresponding values of f�j ,k�
versus f ref�j ,k� for all indices j and k at either axis. Ideally,
all data points would be on the diagonal, which would be the
case if the two functions were identical and the density plot
would show a delta-shaped line along the diagonal. As one
can see from the plots, the highest density of points, which is
indicated by darker red, is almost solely centered at the di-
agonal. Just as the correlation functions coincide, the degree
distributions show the same very good agreement, which is
illustrated in Fig. 2. The statistics per curve are 102 random-
ized realizations for the actor network, 103 for the WWW
network, and 104 for the yeast network in both figures.

IV. CONTROLLING CORRELATIONS IN NETWORKS

The algorithm described in this paper constructs undi-
rected random networks with an arbitrary two-point-

correlation structure. This allows us to test explicitly the in-
fluence of two-point correlations present in a network on its
properties. For example, being able to control the two-point-
correlation structure of a network allows one to directly test
their influence on dynamical processes taking place on the
networks. We therefore aim at developing a formalism which
allows one to control the two-point correlations of a whole
network in terms of the average nearest neighbor degree
knn�k� and the Newman factor r, given a fixed degree distri-
bution P�k�.

As we want to preserve a given degree distribution P�k�,
which translates into a given edge end distribution Pe�k�,
while varying the joint degree distribution P�j ,k�, some re-
strictions apply to the joint degree distribution. We begin
with an ansatz by writing the joint degree distribution P�j ,k�
in product form as in Eq. �4�,

P�j,k� = Pe�j�Pe�k�f�j,k� . �12�

It is clear that the correlations in the network are encoded by
this ansatz within the correlation function f�j ,k�. The rela-
tion to the Newman factor r from the definition Eq. �5� is

r�e
2 = �jk�f�j,k� − 1�� j,k = �jkf�j,k�� j,k − �k�2. �13�

By the notation �·� j,k, we indicate that the average with re-
spect to Pe�k� is to be taken simultaneously over the indices
j and k, similarly as �·� denotes the average with respect to
Pe�k�. The correlation function f�j ,k� is as well tightly con-
nected to the average nearest neighbor degree function
knn�k�. Using that the conditional probability P�j �k�
= P�j ,k� / Pe�k�= Pe�j�f�j ,k�, the definition of Eq. �7� turns
into

knn�k� = �j f�j,k�� j . �14�

Multiplying the average nearest neighbor function knn�k�
with kPe�k� and summing over all k, we are led to

�kknn�k�� = �jkf�j,k�� j,k, �15�

which we can substitute into Eq. �13�, leading us finally to
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f(j

,k
)

FIG. 1. �Color online� Density plot of the correlation function
f ref�j ,k� of the empirical network versus the correlation function
f�j ,k� of the corresponding random network as generated by the
algorithm for all indices j and k. Darker red regions contain a
higher density of data points, while lighter red indicates a lower
density. The reference line y=x is drawn as a guide to the eye.
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FIG. 2. �Color online� Degree distribution P�k� of empirical
networks and their corresponding degree distribution as generated
by the algorithm. The red squares denote the reference points as
measured from the empirical networks and the black circles mark
values measured from the randomized networks.
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r�e
2 = �kknn�k�� − �k�2. �16�

From the constraint of a given degree distribution P�k� it
follows that an integration over either argument of the joint
degree distribution P�j ,k� has to be equal to the correspond-
ing edge end distribution Pe�j� �or Pe�k��. Thus, the correla-
tion function f�j ,k� has to fulfill the condition

Pe�k� = �
j

P�j,k� = Pe�k��f�j,k�� j , �17�

which means

�f�j,k�� j = 1. �18�

The considerations so far are general. However, as we want
to control correlations within the network, we seek for an
explicit correlation function f�j ,k� which has the property of
Eq. �18� and produces a joint degree distribution which
yields a given average nearest neighbor degree knn�k� func-
tion. To do so, we make a simple ansatz for the correlation
function

f�j,k� = 1 + h�j�h�k� . �19�

This functional form may be understood as a series expan-
sion of first order, fulfilling the necessary symmetry property
that the correlation function has to be constant under ex-
change of indices j and k. Plugging this ansatz into Eq. �14�
takes us to

knn�k� = �k� + �jh�j��h�k� , �20�

which means that

h�k� =
knn�k� − �k�

�jh�j��
. �21�

The constant �jh�j�� can easily be calculated by multiplying
Eq. �21� with kPe�k� and summing over all k. Rearranging
the terms then yields

�kh�k�� = ��kknn�k�� − �k�2 = �r�e
2. �22�

Finally, the correlation function f�j ,k� has the form

f�j,k� = 1 +
1

r

�knn�j� − �k���knn�k� − �k��
�e

2 . �23�

Employing condition �18� to the ansatz in Eq. �19� yields

�h�j�� = 0. �24�

This property is consistent with the functional form of h�k�
in Eq. �21�, since the average of h�k� over k with respect to
the edge end distribution Pe�k� yields zero by usage of Eq.
�8� ��knn�k��= �k��. Equation �8� helps furthermore to con-
struct valid average nearest neighbor functions knn�k� with an
arbitrary functional dependence upon the degree k. Taking a
sufficiently smooth and positive weighting function g�k�, the
corresponding knn�k� compatible with Eq. �8� is then

knn�k� =
�k�

�g�k��
g�k� . �25�

However, the resulting correlation function f�j ,k� is still
constrained by even further conditions �25–27�. For example,
the ratio rj,k as introduced in Ref. �27�, is defined as the

actual number of connections Ej,k�=P�j ,k�k̄N� divided by the
maximal number of connections mj,k among the degree
classes j and k. For networks without multiple edges this
ratio is given by

rj,k =
Ej,k

mj,k
=

P�j,k�

minPe�j�,Pe�k�, k̄NPe�j�Pe�k�/jk�
. �26�

It is clear that this ratio must always be in the range between
0 and 1 for all valid degree classes j and k present in the
network,

0 � rj,k � 1 ∀ j,k � �kmin,kmax� . �27�

From this condition the admissible degree range �kmin,kmax�
becomes dependent upon the details of the correlation func-
tion f�j ,k�. To proceed, we choose as an example the average
nearest neighbor function to be a power law knn�k��k�, as
this functional form roughly approximates the measured av-
erage nearest neighbor function of various empirical net-
works. Using this ansatz, one obtains the final form of the
correlation function as

f�j,k� = 1 +
1

�k�+1�/�k� − �k��
1

�k��
�j� − �k����k� − �k��� .

�28�

Up to this point the degree distribution P�k�, or equivalently,
the edge end distribution Pe�k� is still arbitrary as the former
does only enter Eq. �28� via the averages �·� used in the
definition of the correlation function f�j ,k�. Nevertheless, the
range of the exponent � is limited, since the condition of Eq.
�27� has to be fulfilled. A further complication arises from
intrinsic correlations caused by the constraint of the absence
from self-edges and multiple edges. In the following we dis-
cuss these issues for scale-free networks and empirical net-
works in detail.

A. Scale-free networks

The degree distribution P�k� of a scale-free network is
defined by

P�k� � k−�, �29�

where � is the scale parameter. The edge end distribution is
therefore given by

Pe�k� � k−�+1. �30�

As we only discuss finite networks, the range of admissible
degrees k is limited by various conditions. First, the rapidly
decreasing probability for increasing degrees k requires one
to cut off the degree range at a maximal degree kmax above
which the accumulated probability weight is equal to 1/N.
This yields the so-called natural cutoff �28�,
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kmax
natural = N1/��−1�. �31�

This natural cutoff is necessary to prevent large fluctuations
in a finite random network ensemble and is an upper limit for
the maximal degree kmax. It is important to emphasize that
this cutoff is by no means induced by the topology of the
complex network.

However, it turns out that the natural cutoff is not always
compatible with the condition of Eq. �27�, which can easily
be used to determine the so-called structural cutoff. In the
case of scale-free networks, Eq. �26� reduces for sufficiently

large degrees j and k to rj,k= jkf�j ,k� / k̄N and defines there-
fore a maximal degree kmax at the upper bound for the ratio
�rkmax,kmax

=1�. With this criteria, one obtains, in the case of
uncorrelated networks having a constant correlation function
f�j ,k�=1, the scale parameter independent cutoff kmax

structural

�N1/2. This is smaller than the natural cutoff for values of
the scale parameter in the range 2���3. Nevertheless,
newer calculations by Dorogovtsev et al. �26� reveal that this
structural cutoff is still too large in that particular range of
the scale parameter � and causes intrinsic correlations to
arise within otherwise uncorrelated networks without self-
edges or multiple edges. Due to the maximal degree kmax
being too large and the required constraints, the vertices with
large degrees k do have a tendency to connect preferably
with low degree vertices, which effectively yields disassor-
tativity. The reason for the failure of condition �27� in the
case of scale-free networks with a scale parameter � in the
range �2,3� can be seen in the diverging fluctuations in the
degree distribution as only the first moment of the degree
distribution P�k� is finite. The approach taken by Dorogovt-
sev et al. is based upon a statistical ensemble ansatz. A ca-
nonical network ensemble is defined as the set of networks
with a fixed set of vertices and a fixed number of edges. The
final networks are then the outcome of an evolution process
where randomly chosen edges are removed and simulta-
neously added to a pair of vertices in the network. A pair of
vertices is chosen at random with weights given by the prod-
uct of a preferential function f�j�f�k� where j and k are the
degrees of the respective vertices. With the preferential func-
tion f�k�=k+1−� and beneath the critical temperature, the
authors observe that the degree distribution becomes scale-
free. However, depending upon the finiteness of the second
moment of the degree distribution, Dorogovtsev find differ-
ent cutoffs of the degree range

kmax
ensemble = �N1/2 if � 	 3

N1/�5−�� if 2 � � � 3.
� �32�

The evolution process driving a network into this equilib-
rium network is, of course, neither the same as constructing
a network with the CM algorithm nor with the algorithm
developed in this paper. The CM algorithm and the algorithm
presented in this paper, however, fix a priori the number of
vertices and edges as well, just as in the canonical network
ensemble. Thus, both algorithms can be interpreted to pro-
duce graphs which are members of the canonical network
ensemble below the critical temperature, since both ap-

proaches evidently yield random networks with the correct
degree distribution.

Up to this point, we have only treated the uncorrelated
case, which corresponds to �=0 in Eq. �28�. Numerical ex-
periments indicated a strong deviation from the expected
power law for the measured average nearest neighbor knn�k�
function in the case of assortative networks which have �
	0, if one naively uses a cutoff as it is applicable for uncor-
related networks. The average nearest neighbor function
shows that the vertices with the largest degree fall below
their expected average nearest neighbor value and tend there-
fore to cause some degree of disassortivity. This effect roots
in the constraint of the prevention of self-edges and multiple
edges and becomes stronger for larger values of the exponent
�. To compensate for this effect, we incorporated the expo-
nent � in the exponents of the maximal degrees identified so
far in a simple way �an analytically exact derivation is be-
yond the scope of this paper� and always use the minimal
resulting maximal degree,

kmax = minN�1−��/�5−��,N�1−��/��−1�,N1/��−1�� . �33�

Using a maximal degree of this form lowers �raises� the cut-
off degree for assortative �disassortative� correlations with
increasing �decreasing� exponent �. Having fixed the maxi-
mal degree kmax, we set the minimal degree kmin to be 2 in all
simulations. This ensures that we always obtain a largest
giant component in the network having almost the size of the
entire network, which in turn guarantees that the largest giant
component has the same two-point correlation structure as
the entire network. This is favorable, since in most applica-
tions only the largest component of the generated random
networks is of interest.

As already pointed out, it is crucial to note that only the
first moment of the degree distribution is finite for values of
the scale parameter � in the range �2,3� while all higher
moments diverge. However, already the first moment of the
edge end distribution Pe�k� is diverging in this range of the
scale parameter �. This has the important consequence that
the average nearest neighbor function knn�k� becomes system
size dependent, as �knn�k��= �k� by Eq. �8�. To validate the
predicted power-law behavior of the average nearest neigh-
bor function knn�k�, we employ a dimensionless data collapse
of the function,

knn�k�k−��k��/�k� = 1. �34�

This type of plot is extremely sensitive even against the
smallest deviations from the predicted power law in the av-
erage nearest neighbor function knn�k�. The numerical results
for various values of the scale parameters � and the exponent
� are shown in Fig. 3 for networks of size N=106. Each data
point is calculated over an ensemble of 103 random net-
works. The curves run quite nicely along the predicted con-
stant line of 1. Especially the �=0 curves coincide with the
constant line of 1, which is a further, very important valida-
tion of the algorithm, since in this case the algorithm has to
coincide with the well-known UCM algorithm �10�. Three
details are interesting to note: �i� with decreasing � the
curves become longer as the maximal degree kmax increases;
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�ii� not all values of the exponent � can be realized for a
given value of the scale parameter � as condition rj,k
0 is
violated for some curves and would require a further adjust-
ment of kmax or even kmin; and �iii� with increasing scale
parameter � the curves for larger values of the exponent �
show a trend to slightly bend below the constant line of 1,
which is an indication that the cutoff as of Eq. �33� still gives
slightly too large values for the maximal degree kmax. An-
other test of our formalism can be accomplished by compar-
ing the Newman factor r of the resulting networks to the
values of the analytically predicted ones by Eq. �13�. Figure
4 shows that numerical simulations �points� and theoretical
predictions �lines� coincide very well.

The diverging moments �k� and �k�+1� of the edge end
distribution Pe�k� for values of the scale parameter � within
the range �2,3� make a careful inspection of finite-size effects
necessary. One can easily see that the ratio �k�+1� / �k�, ap-
pearing in the denominator of the correlation function f�j ,k�
in Eq. �28�, diverges, as the ratio becomes proportional to
kmax

� . Nevertheless, a detailed calculation reveals certain re-

strictions on the maximal range of admissible degrees k if �
is chosen to be different than 0. In this case, the criterion
rj,k
0 leads to a relation between the minimal degree kmin
and the maximal degree kmax. Thus, the range of admissible
degrees is limited and the moments �k� and �k�+1�, which
would otherwise diverge, remain finite. Figure 5 shows the
finite-size effects on the Newman factor r as a function of the
exponent �. The plot shows only a marginal effect of the
system size N on the curves. However, for smaller sizes, a
broader range in the exponent � can be used. This is due to
a violation of the rj,k
0 criterion, which requires for larger
networks either a smaller maximal degree kmax than the one
used from Eq. �33� or a greater minimal degree kmin. Despite
the restrictions which apply to the ansatz made, the range of
correlations span very well the range of correlations found in
empirical networks.

B. Empirical networks

A very interesting aspect of our formalism is its applica-
bility to empirical networks. By extracting a degree sequence
from an empirical network and employing the formalism de-
veloped in the last section, it is possible to create random
networks which have the same degree sequence as the em-
pirical network and an arbitrarily chosen average nearest
neighbor function knn�k�, for instance, following a power law
with tunable exponent �. Thus, given a degree sequence
from a network, one constructs from this the corresponding
edge end distribution Pe�k� and calculates then via Eq. �28� a
joint degree distribution P�j ,k� with which one builds a ran-
domized network. As a result, one obtains randomized ver-
sions of the empirical network with freely tunable two-point-
correlation strength, depending upon the choice of the
exponent �. However, the range of the exponent � is limited
by condition �27�. In Figs. 6�a�–6�c� the numerical results are
shown for the actor, the WWW, and the yeast networks. The
plot uses the same type of data collapse as already presented
in Fig. 3. The deviations from the expected constant value of
1 for the data collapse are due to intrinsic correlations which
arise in networks with neither self-edges nor multiple edges
and are caused by the maximal degree kmax in the degree
sequence �see Sec. IV A�. Especially the WWW network is
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strongly affected by this as it has a maximal degree kmax of
the order 104, while the network size is 105 and hence only
one order of magnitude greater.

V. ANNEALED NETWORKS

To investigate, for example, a dynamical process on ran-
dom networks, one typically performs the dynamical process
on a whole ensemble of networks and computes averages of
the observables one is interested in. The algorithm presented
so far is suitable to generate such random network ensemble.
The network itself always stays constant during one dynami-
cal process and one refers to this type of network typically as
a static or a quenched network. A different approach is to
change the network on a certain time scale during a dynami-
cal process and then calculate averages over time of the ob-
servables one is interested in. In an extreme case, the vertices
of the network are reshuffled before every microscopic step
of the dynamic. Such changing networks are referred to as
annealed networks �see Refs. �20,29–31��. If the dynamic is
local in each microscopic step �for instance, a diffusion step
from one vertex to another along an edge�, it is sufficient to
draw edges on demand only and to generate solely the local
connections around the vertex considered. Here, we propose
a scheme which efficiently simulates such annealed net-
works. The idea is to treat vertices of a network discretely
while the edges are solely represented by an arbitrary joint
degree distribution P�j ,k� such that the connectivity struc-
ture of the network is only defined on average. Hence, this
scheme effectively simulates the network’s connectivity
structure in a mean-field �MF�-like manner.

This is a very convenient tool as theoretical approaches to
complex network topics are frequently based on MF theories.
Successful examples are reaction-diffusion systems �32,33�,
epidemic disease spreading �22�, and phase transitions in fer-
romagnetic magnets �34�, to mention just a few examples.
These theories usually describe the network topology via a
statistical approach. Thus, it is desirable to numerically rep-
resent networks in a probabilistic manner as well. This al-
lows an even better test of MF based theories since the net-
work is represented as it is done within the theory.
Furthermore, by comparison of quenched with annealed
simulations, one can analyze in detail which aspects of such
a MF theory are an overapproximation due to the MF as-
sumption. We define such an annealed network to consist of
a degree sequence ki� of size N and a corresponding joint
degree distribution P�j ,k�. Each element i of the degree se-
quence represents a vertex with ki connections. Thus, the set
of edges is not fixed, only the total number of edges �Ne

=�iki� is held constant. Whenever, for example, a dynamical
process requests an adjacent vertex of a given vertex, the
neighbor vertex is instantly determined by sampling one
edge which emanates from the given vertex. This edge is
drawn from the joint degree distribution P�j ,k� and will in-
stantly be removed after usage.

This simulates a continuously rewired network which is
only locally defined by means of one edge at a time. The first
four steps to set up such an annealed network are basically
the same as done for the initialization of the algorithm of
Sec. III: �i� Draw a degree sequence from the joint degree
distribution P�j ,k� or take the degree sequence from a real
network. That degree sequence is �ii� sorted according to
degree classes and �iii� mapped into a discrete edge end dis-
tribution Pe

�d��k�. In the same manner as done previously, �iv�
one calculates the discrete conditional degree distribution
P�d��j �k� from the theoretical joint degree distribution
P�j ,k�. Now, instead of constructing the network, one only
redefines how neighbors of vertices and hence how edges
have to be understood:

�1� The neighbor vertices of a vertex with degree k are
always drawn by the conditional probability distribution
P�d��j �k�.

�2� An edge is sampled by first drawing a vertex via the
edge end distribution Pe

�d��k� and secondly, the vertex neigh-
bor is found by sampling the conditional probability distri-
bution P�d��j �k�.

As we want the network to be free of self-connections, we
assure that the sampled vertices at both ends of the sampled
edges are not the same. However, the constraint of prevent-
ing multiple edges among vertices is not possible to be en-
forced within this local definition of the network. Therefore,
these annealed networks are free of the intrinsic degree cor-
relations which arise due to this particular constraint. This
becomes apparent in Figs. 6�d�–6�f� where numerical results
of annealed networks are shown as a data collapse for the
average nearest neighbor function knn�k�, aside with the cor-
responding curves in the case where the network is actually
constructed �Figs. 6�a�–6�c��. Only the curve for the WWW
network, Fig. 6�e�, deviates from the expected value of 1 for
very large degrees. This has to be attributed to the prevention
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of self-connections, which is still enforced. Since these ver-
tices with a very large degree are not allowed to connect to
themselves, they have to connect on average with vertices
which have a degree below the preassigned average nearest
neighbor function knn�k�, causing some slight trend towards
disassortativity.

VI. CONCLUSIONS

In summary, we have presented an efficient and accurate
algorithm which generates networks with an a priori defined
two-point degree-degree correlation structure defined by an
arbitrary joint degree distribution P�j ,k�. This provides
much better null models for the investigation of empirical
networks, as these are usually two-point correlated. Besides
the applicability to reconstruct the two-point correlations of
empirical networks, we developed a formalism which allows
one to systematically tune the strength of two-point correla-
tions in a network while preserving the degree distribution
P�k� of a network. The two-point correlations are specified in
our ansatz via the average nearest neighbor function knn�k�,

which we exemplified by a power-law ansatz knn�k��k� with
the tunable exponent �. As two important examples, we em-
ployed this formalism in the cases of scale-free networks and
empirical networks. However, as intrinsic degree correlations
arise from the constraint of the prevention of self-edges and
multiple edges, these cause inevitable deviations from the
theoretically preassigned two-point correlations. Further-
more, we found that the maximal cutoff degree kmax in the
case of artificial scale-free networks to prevent these intrinsic
correlations is substantially lower than it was believed.

At last, we introduced the notion of two-point-correlated
annealed networks which are ideally suited to test the valid-
ity of mean-field theories, since the edges of these networks
are solely represented in a probabilistic manner.

Using this algorithm and the new formalism developed,
one can investigate the effects of two-point correlations in
empirical and artificial networks. Such a scheme is expected
to be an important tool to better understand, for example,
how the topology of a network influences dynamical pro-
cesses on it.
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